
A Study of Data Layout in Multi-channel

Processing-In-Memory Architecture
Taeyang Jeong

Dept. of Electrical and Electronic Eng.,
Yonsei University

Seoul, Republic of Korea
+822-2123-7826

drthvbfg@yonsei.ac.kr

Duheon Choi
Dept. of Electrical and Electronic Eng.,

Yonsei University
Seoul, Republic of Korea

+822-2123-7826

cdh0527@yonsei.ac.kr

Eui-Young Chung

Dept. of Electrical and Electronic Eng.,
Yonsei University

Seoul, Republic of Korea
+822-2123-7826

eychung@yonsei.ac.kr

Sangwoo Han
Dept. of Electrical and Electronic Eng.,

Yonsei University
Seoul, Republic of Korea

+822-2123-7826

swhan0330@yonsei.ac.kr

ABSTRACT

In modern computing hardware, the performance gap between

processor and memory is one of the most significant factors that

limits overall performance improvement of computing system.

Also, with the advent of multicore and manycore system, memory

bandwidth per core is decreasing constantly. To solve this

problem, recently, many researchers are interested in Processing-

In-Memory (PIM). PIM is that processing elements are attached to

memory-side, so near-memory-processing which is suitable for

memory intensive application can be possible. Various researches

studied PIM, but it was just single-channel memory system. In

addition, PIM is a new architecture that is different with

conventional computing system. Thus, common data layout

cannot become optimal case for PIM. Optimal data layout is also

needed to be studied.

In this paper, we propose the multi-channel PIM architecture with

PIM-to-PIM communication, because data that is needed to

operate can be distributed over several channels. To utilize multi-

channel PIM architecture properly, we also introduce data layout

that can minimize the number of PIM-to-PIM communications

which are overheads of the system and maximize parallelism to

reduce execution time. We evaluate it about vector arithmetic

operation. The result is that execution time is improved about 393%

and compared to the worst case, in the optimal data layout.

CCS Concepts

• Hardware➝Memory and dense storage

Keywords

Processing-In-Memory; data layout; multi-channel memory

architecture.

1. INTRODUCTION
Until the middle of 1990s, the most important research field of

computer system was a processor. Because memory could offer

sufficient memory bandwidth and latency, the performance of

computer system was determined by clock frequency and cycle-

per-instruction of processor. However, over the last several

decades, the performance gap between processor and memory has

gradually eliminated and even reversed. Due to this problem, the

cases that memory cannot meet bandwidth and latency demands

of host processor are increased. Also, the appearance of multicore

and manycore system makes computing power better by utilizing

parallelism, but allocated memory bandwidth per core is

decreased. This problem is called memory wall [1] that memory

becomes dominant part to decide overall system performance

even if computing power of processor is enough to meet needs of

applications.

In recent years, the demand of heavy workload applications, like

neural networks and deep learning, that request a lot of memory

accesses is grown quickly. Thus, memory wall problem becomes

major issue on computer system. To solve it, researchers propose

various methods to improve memory performance. PIM is one of

them. PIM adds computing power to memory, so it can be a good

solution to decrease the data movements between host processor

and memory and reduce the memory latency by eliminating off-

chip data transfers. PIM was studied in many ways [2] [3] [4] [5]

a few decades ago, but it had technological limits, like power, area,

and thermal issues.

Emerging 3D-stacked DRAM with through silicon via (TSV), like

hybrid memory cube (HMC) and high bandwidth memory (HBM),

gives PIM the potential that was proposed decades ago. 3D-

stacked DRAM re-architects the DRAM to improve much better

timing and energy efficiency and reduce area much smaller. The

researches of new memory devices are also utilized to make PIM

architecture. Thus, it becomes possible to implement PIM

nowadays.

Recently, many researches discuss PIM with 3D-stacked DRAM

[6] [7] [8] [9] or new memory devices, but they almost assume

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICSCA 2018, February 8–10, 2018, Kuantan, Malaysia
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5414-1/18/02…$15.00

https://doi.org/10.1145/3185089.3185136

single-channel PIM architecture. Today, processor for high

performance computing server or even desktop support dual-

channel or quad-channel memory. These researches cannot reflect

the latest computing system. Thus, it is needed to study multi-

channel PIM architecture. Furthermore, by attaching processing

element to memory, the paths of data movement are added and the

masters who request memory access are increased. Therefore, the

study of optimized data layout to utilize properly multi-channel

PIM architecture is required.

Figure 1. Multi-Channel PIM architecture

In this paper, first, we propose the multi-channel PIM architecture.

We put processing elements on each channel and they are

operated independently. By doing this, parallel computing can be

done by each channel. Also, we implement PIM-to-PIM (channel-

to-channel) communication which makes direct communication

on each PIM without going through host processor or memory

controller, because the data which is necessary to operate can be

distributed by channel interleaving. Thus, to reduce the data

transfer overhead of host-memory or memory controller-memory,

direct communication method is required.

Second, we consider optimal data layout to minimize PIM-to-PIM

communication and utilize parallelism on our proposed multi-

channel PIM architecture about vector arithmetic operation.

Operating system allocates data by page granularity and with

interleaving policy. It can be allocated on only one channel or

several channels. Thus, interleaving policy is important factor to

determine data layout. In addition, optimal data layout can be

different depending on application characteristics. With

considering PIM-to-PIM communication, interleaving policy, and

application characteristics, we analyze four cases of data layout.

2. ARCHITECTURE AND MODEL
In this chapter, we introduce our proposed multi-channel PIM

architecture and analyze four cases of data layout with assuming

quad-channel memory and with pipelining sequences.

2.1 Multi-Channel PIM Architecture
In Figure 1, it shows our proposed multi-channel PIM architecture.

There is processing element to handle PIM command and PIM-to-

PIM interface to exchange data with another channel directly.

This architecture is implemented for each channel. We will

explain each module with exploring data flow.

From the host processor, commands that are needed to operate on

PIM are offloaded to memory-side. Offloaded commands are

transferred to free channel. PIM driver which is in kernel is

software stack of PIM architecture. Application calls PIM

command then, PIM driver translates virtual address of source and

destination data to physical address and sends command to PIM

controller. If the data is common memory access, it is transferred

to memory controller. PIM controller splits serialized command

data to feasible command and schedules them to retain

consistency and for optimal computation. Command decoder

decodes PIM command to get opcode, source data address and

destination data address and sends read request with source data

address to memory controller. If memory controller finds source

data in local memory, it transfers data to processing element.

Otherwise, it sends read fail response to command decoder. Then,

command decoder requests PIM-to-PIM communication to PIM-

to-PIM interface to read data from other channel directly without

interference of host processor. PIM-to-PIM interface broadcasts

read request to another channel. When data is come, it transfers

data to processing element. Processing element processes PIM

operation with each input and sends write request to memory

controller and memory controller handles it. If there is no

destination data in local memory, memory controller sends write

fail response to processing element. Then, processing element re-

sends write request to PIM-to-PIM interface. PIM-to-PIM

interface broadcasts it and transfers data to right channel.

PIM-to-PIM communication occurs in three cases, when reading

data from and writing data to another channel and when PIM

driver doing address translation. In case of address translation,

page global directory (pgd) may not exist in local memory. Thus,

if pgd does not exist on local channel, PIM in local channel

should request pgd to another channel who has it.

We use single-instruction-multiple-data (SIMD) processor,

because it can process many data which are aligned contiguously

with low frequency, power and area by utilizing parallelism. It is

also specialized to treat vector operation which does same

operation on sequential data simultaneously. Therefore, optimal

data layout to utilize computing power of SIMD processors is

needed.

In this architecture, memory controller which is attached on

processor-side conventionally is moved to memory-side, because

it makes processing element access memory simple. Otherwise,

data movements which are critical overheads are required to

access memory from processing element. Such an architecture is

implemented in HMC.

2.2 Case Study of Data Layout
Based on above multi-channel PIM architecture of chapter 2.1,

we assume quad-channel memory and analyze data layout for

vector arithmetic operation to minimize PIM-to-PIM

communication and utilize parallelism to improve performance.

When performing page allocation on the memory, the data layout

is determined depending on the channel interleaving policy. If

channel interleaving is not supported, one page is allocated to one

channel, but if channel interleaving is supported, one page is

allocated to multiple channels. Figure 2 shows four cases of data

layout of vector operation depending on page allocation in quad-

channel memory and shows pipelining sequences of each case.

Figure 2-(a) shows the data layout where both source and

destination data pages are allocated to one channel. Figure 2-(b)

shows that source data pages are allocated to same channel, but

destination data page is allocated to different channel. Figure 2-(c)

Figure 2. The Cases of Data Layout and Pipelining Sequences

shows the data layout in which all data pages are allocated to

different channels. In Figure 2-(d), all the data pages are evenly

distributed across all channels.

First, in the case of Figure 2-(a), all data pages are allocated to the

same channel. Thus, the pipelining sequence is that processing

element reads two source data from the local memory, then

performs the PIM operation, and writes results to the destination

data of the local memory. This data layout is similar with single-

channel PIM architecture. In this case, PIM-to-PIM

communications are not needed, but address translation may be

needed, Parallel computing is not performed either, because all

processes are done in local memory.

In Figure 2-(b), two source data are allocated to the same channel,

but destination data is allocated to another channel. Thus, PIM-to-

PIM communication between source data channel and destination

data channel is necessary. In pipelining sequence of Figure 2-(b),

PIM-to-PIM communication is added between EXEC and Write

in the pipelining sequence of Figure 2-(a).

In Figure 2-(c), the channel interleaving policy is not applied, and

all data pages are allocated to different channels. Therefore,

fetching the source data from the other channel through PIM-to-

PIM communication is additionally needed in Figure 2-(b). We

can see that this case is where the number of PIM-to-PIM

communication is the greatest. In Figure 3-(c), the PIM-to-PIM

communication overhead occupies a large part of the entire

pipelining sequence. The interesting feature of this layout is that

reading source data at the channel 0 and reading source data at the

channel 1 to send them to channel 0 by PIM-to-PIM

communication can be processed at the same time.

In Figure 2-(d), the channel interleaving policy is applied, and one

page is split into four channels. If the indexes of the distributed

source data and destination data is same, it is possible to perform

operations in parallel on each channel without data read/write

PIM-to-PIM communication. Therefore, it is expected that the

number of pipelining sequence repetition is reduced to one-fourth

as compared with Figure 2-(a). However, it needs address

translation in every channel. Thus, a lot of address translation

PIM-to-PIM communication overheads are expected.

3. SIMULATION ENVIRONMENT
We have experimented with gem5 full system simulator in which

multi-channel PIM architecture is applied. The gem5 is cycle-

accurate simulator, so it simulates micro-architecture cycle-by-

cycle. To implement PIM architecture, we customize memory

parts of gem5. We add processing element and implement PIM-

to-PIM communication in the gem5.

Table 1 shows processor configuration that we use on gem5

simulator. ARM processor is used to host processor, because in

case of x86 processor, when implementing PIM architecture on

real system, customizing hardware architecture is difficult since -

Table 1. Processor Configuration

Parameter Value

Core ARM Cortex-A15

Frequency 1.0 GHz

of Cores 1 – 4

L1 Caches 32KB Dcache, 32KB Icache, 4-set

associatives.

L2 Caches 512KB, 8-set associatives

Etc Out-of-Order Pipeline, Dynamic

branch prediction, BTB, GHB

Table 2. Memory Configuration

Parameter Value

Memory Type HMC 1.0 [10]0

Memory Size 4GB

Bandwidth 160GB/s

Latency (tRAS) 21.6ns

of Channels 4

of Layers 4

of Banks 2

Row Buffer Size 256B

Etc 32 TSVs, close page policy, 64 write

buffers, 32 read buffers

Figure 3. The Number of PIM-to-PIM Communication on Each Case

- already most of x86 processors have memory controller in on-

chip, while ARM processor is fully customizable.

Table 2 shows memory configuration. We utilize HMC memory

to apply PIM, because HMC has logic layer on bottom of 3D-

stacked layers. This logic layer has user customizable area and its

own atomic data operations. Thus, HMC is appropriate to apply

PIM architecture. In addition, HMC has high memory bandwidth

and low internal latency.

To support PIM hardware, we make PIM driver on kernel. we set

some parts of kernel address ranges as PIM command transaction.

Address translation of virtual addresses of source and destination

data is done by PIM driver. By using PIM driver, host processor

can offload operations to PIM through the kernel and PIM

hardware can access memory by translated physical address.

4. EVALUATION
Based on simulation environment that sets on chapter 3, we

compare our proposed multi-channel PIM architecture with

single-channel PIM architecture. Also, we evaluate PIM-to-PIM

communication overhead and execution time of vector operation

on each case of data layout.

Figure 4. Normalized Execution Time on Each Case

Figure 3 shows the number of PIM-to-PIM communication case

by case. The name of each case is taken from Figure 2. As we

expected in chapter 2.2, the case, 2-(a), has the lowest PIM-to-

PIM communication, totally 15 times, because it has essential data

in its local memory and only address translation needs PIM-to-

PIM communication to get pgd. 2-(b) and 2-(c) have several PIM-

to-PIM communications. Except for address translation, because

the requested data are in the different channel, data read and write

operations are required through PIM-to-PIM communication.

Each total number of communication is 31 and 44. In 2-(d),

address translations are dominant factors of PIM-to-PIM

communication, because it utilizes all processing elements of all

channels. Thus, every channel performs address translations. it

needs 4 times more than others. Total number of communication

is 36.

Figure 4 represents normalized execution time on each case. We

normalize execution time based on case 2-(a). As a result, we

demonstrate that case 2-(d), which all data are distributed on each

channel with channel interleaving policy, has the lowest execution

time. It speedups about 393.5% faster than basis, 2-(a). Although

2-(d) has more number of PIM-to-PIM communication than 2-(a),

because of parallelism, execution time is reduced. 2-(b) and 2-(c)

are slower than 2-(a) due to PIM-to-PIM communication

overheads.

But, it is primitive result, because cycle and delay model of PIM

in gem5 is set heuristically. Also, it only compares the

computation part of vector arithmetic operation code. Thus, our

future works will be setting realistic parameters on gem5 and

optimization in the entire application.

5. CONCLUSION
Performance gap between processor and memory is emerging as

critical issues in modern computing systems. To solve this

problem, several researches on PIM are performed. In this paper,

we introduce PIM architecture in multi-channel memory and

support PIM-to-PIM communication. This is to enable the data to

be directly read without the host system and the memory

controller when the data required for the operation exists in

another channel. However, this is an overhead to overall system

performance. Therefore, we have searched for data layout that

minimizes PIM-to-PIM communication overhead and enhances

performance through parallelism.

We observed a 393% faster data layout versus a bad case data

layout for vector operations through high parallelism and shows

for a data layout with minimal number of PIM-to-PIM

communication.

6. ACKNOWLEDGEMENTS
This work was supported by Samsung Electronics and the

National Research Foundation of Korea (NRF) grant funded by

the Korea government (MSIP) (2016R1A2B4011799).

7. REFERENCES
[1] Wm. A. Wulf, Sally A. McKee. 1995. Hitting the memory

wall: implications of the obvious. ACM SIGARCH Computer

0

5

10

15

20

25

CH.0 CH.1 CH.2 CH.3 CH.0 CH.1 CH.2 CH.3 CH.0 CH.1 CH.2 CH.3 CH.0 CH.1 CH.2 CH.3

2-(a) 2-(b) 2-(c) 2-(d)

#
 o

f
P

IM
-t

o
-P

IM
 C

o
m

m
u

n
ic

a
ti

o
n

Address Translation Read Write

0

0.2

0.4

0.6

0.8

1

1.2

2-(a) 2-(b) 2-(c) 2-(d)

N
o

r
m

a
li

z
e
d

E
x
e
c
u

ti
o

n
 T

im
e

Architecture News. Volume 23 Issue 1. (March. 1995). pp 20-

24.

[2] M. Gokhale, B. Holmes, and K. Iobst. 1995. Processing in

memory: the terasys massively parallel pim array. Computer,

vol. 28. no 4. pp 23–31.

[3] M. Oskin, F. T. Chong, and T. Sherwood. 1998. Active pages:

A computation model for intelligent memory. International

Symposium of Computer Architecture. pp. 192–203.

[4] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K.

Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. 1997. A

case for intelligent ram. IEEE International Symposium on

Micro Architecture, Volume 17, no 2, pp 34–44, Mar 1997.

[5] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P.

Pattnaik, and J. Torrellas. 2012. Flexram: Toward an

advanced intelligent memory system. IEEE International

Conference on Computer Design. pp. 5–14.

[6] Akin, B., Franchetti, F., & Hoe, J. C. 2015, June. Data

reorganization in memory using 3D-stacked DRAM. ACM

SIGARCH Computer Architecture News. Vol. 43, No. 3, pp.

131-143.

[7] Ahn, J., Hong, S., Yoo, S., Mutlu, O., & Choi, K. 2015, June.

A scalable processing-in-memory accelerator for parallel

graph processing., 2015 ACM/IEEE 42nd Annual

International Symposium on Computer Architecture (ISCA .

pp. 105-117.

[8] Kim, D., Kung, J., Chai, S., Yalamanchili, S., &

Mukhopadhyay, S. 2016, June. Neurocube: A programmable

digital neuromorphic architecture with high-density 3D

memory. 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA) (pp. 380-392).

[9] Nair, R., Antao, S. F., Bertolli, C., Bose, P., Brunheroto, J. R.,

Chen, T., ... & Fleischer, B. M. 2015. Active memory cube:

A processing-in-memory architecture for exascale systems.

IBM Journal of Research and Development, 59(2/3), 17-1.

