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ABSTRACT 

In modern computing hardware, the performance gap between 

processor and memory is one of the most significant factors that 

limits overall performance improvement of computing system. 

Also, with the advent of multicore and manycore system, memory 

bandwidth per core is decreasing constantly. To solve this 

problem, recently, many researchers are interested in Processing-

In-Memory (PIM). PIM is that processing elements are attached to 

memory-side, so near-memory-processing which is suitable for 

memory intensive application can be possible. Various researches 

studied PIM, but it was just single-channel memory system. In 

addition, PIM is a new architecture that is different with 

conventional computing system. Thus, common data layout 

cannot become optimal case for PIM. Optimal data layout is also 

needed to be studied. 

In this paper, we propose the multi-channel PIM architecture with 

PIM-to-PIM communication, because data that is needed to 

operate can be distributed over several channels. To utilize multi-

channel PIM architecture properly, we also introduce data layout 

that can minimize the number of PIM-to-PIM communications 

which are overheads of the system and maximize parallelism to 

reduce execution time. We evaluate it about vector arithmetic 

operation. The result is that execution time is improved about 393% 

and compared to the worst case, in the optimal data layout. 
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1. INTRODUCTION 
Until the middle of 1990s, the most important research field of 

computer system was a processor. Because memory could offer 

sufficient memory bandwidth and latency, the performance of 

computer system was determined by clock frequency and cycle-

per-instruction of processor. However, over the last several 

decades, the performance gap between processor and memory has 

gradually eliminated and even reversed. Due to this problem, the 

cases that memory cannot meet bandwidth and latency demands 

of host processor are increased. Also, the appearance of multicore 

and manycore system makes computing power better by utilizing 

parallelism, but allocated memory bandwidth per core is 

decreased. This problem is called memory wall [1] that memory 

becomes dominant part to decide overall system performance 

even if computing power of processor is enough to meet needs of 

applications. 

In recent years, the demand of heavy workload applications, like 

neural networks and deep learning, that request a lot of memory 

accesses is grown quickly. Thus, memory wall problem becomes 

major issue on computer system. To solve it, researchers propose 

various methods to improve memory performance. PIM is one of 

them. PIM adds computing power to memory, so it can be a good 

solution to decrease the data movements between host processor 

and memory and reduce the memory latency by eliminating off-

chip data transfers. PIM was studied in many ways [2] [3] [4] [5] 

a few decades ago, but it had technological limits, like power, area, 

and thermal issues. 

Emerging 3D-stacked DRAM with through silicon via (TSV), like 

hybrid memory cube (HMC) and high bandwidth memory (HBM), 

gives PIM the potential that was proposed decades ago. 3D-

stacked DRAM re-architects the DRAM to improve much better 

timing and energy efficiency and reduce area much smaller. The 

researches of new memory devices are also utilized to make PIM 

architecture. Thus, it becomes possible to implement PIM 

nowadays. 

Recently, many researches discuss PIM with 3D-stacked DRAM 

[6] [7] [8] [9] or new memory devices, but they almost assume 
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single-channel PIM architecture. Today, processor for high 

performance computing server or even desktop support dual-

channel or quad-channel memory. These researches cannot reflect 

the latest computing system. Thus, it is needed to study multi-

channel PIM architecture. Furthermore, by attaching processing 

element to memory, the paths of data movement are added and the 

masters who request memory access are increased. Therefore, the 

study of optimized data layout to utilize properly multi-channel 

PIM architecture is required. 

  

Figure 1. Multi-Channel PIM architecture 

In this paper, first, we propose the multi-channel PIM architecture. 

We put processing elements on each channel and they are 

operated independently. By doing this, parallel computing can be 

done by each channel. Also, we implement PIM-to-PIM (channel-

to-channel) communication which makes direct communication 

on each PIM without going through host processor or memory 

controller, because the data which is necessary to operate can be 

distributed by channel interleaving. Thus, to reduce the data 

transfer overhead of host-memory or memory controller-memory, 

direct communication method is required. 

Second, we consider optimal data layout to minimize PIM-to-PIM 

communication and utilize parallelism on our proposed multi-

channel PIM architecture about vector arithmetic operation. 

Operating system allocates data by page granularity and with 

interleaving policy. It can be allocated on only one channel or 

several channels. Thus, interleaving policy is important factor to 

determine data layout. In addition, optimal data layout can be 

different depending on application characteristics. With 

considering PIM-to-PIM communication, interleaving policy, and 

application characteristics, we analyze four cases of data layout. 

2. ARCHITECTURE AND MODEL 
In this chapter, we introduce our proposed multi-channel PIM 

architecture and analyze four cases of data layout with assuming 

quad-channel memory and with pipelining sequences. 

2.1 Multi-Channel PIM Architecture 
In Figure 1, it shows our proposed multi-channel PIM architecture. 

There is processing element to handle PIM command and PIM-to-

PIM interface to exchange data with another channel directly. 

This architecture is implemented for each channel. We will 

explain each module with exploring data flow. 

From the host processor, commands that are needed to operate on 

PIM are offloaded to memory-side. Offloaded commands are 

transferred to free channel. PIM driver which is in kernel is 

software stack of PIM architecture. Application calls PIM 

command then, PIM driver translates virtual address of source and 

destination data to physical address and sends command to PIM 

controller. If the data is common memory access, it is transferred 

to memory controller. PIM controller splits serialized command 

data to feasible command and schedules them to retain 

consistency and for optimal computation. Command decoder 

decodes PIM command to get opcode, source data address and 

destination data address and sends read request with source data 

address to memory controller. If memory controller finds source 

data in local memory, it transfers data to processing element. 

Otherwise, it sends read fail response to command decoder. Then, 

command decoder requests PIM-to-PIM communication to PIM-

to-PIM interface to read data from other channel directly without 

interference of host processor. PIM-to-PIM interface broadcasts 

read request to another channel. When data is come, it transfers 

data to processing element. Processing element processes PIM 

operation with each input and sends write request to memory 

controller and memory controller handles it. If there is no 

destination data in local memory, memory controller sends write 

fail response to processing element. Then, processing element re-

sends write request to PIM-to-PIM interface. PIM-to-PIM 

interface broadcasts it and transfers data to right channel. 

PIM-to-PIM communication occurs in three cases, when reading 

data from and writing data to another channel and when PIM 

driver doing address translation. In case of address translation, 

page global directory (pgd) may not exist in local memory. Thus, 

if pgd does not exist on local channel, PIM in local channel 

should request pgd to another channel who has it. 

We use single-instruction-multiple-data (SIMD) processor, 

because it can process many data which are aligned contiguously 

with low frequency, power and area by utilizing parallelism. It is 

also specialized to treat vector operation which does same 

operation on sequential data simultaneously. Therefore, optimal 

data layout to utilize computing power of SIMD processors is 

needed. 

In this architecture, memory controller which is attached on 

processor-side conventionally is moved to memory-side, because 

it makes processing element access memory simple. Otherwise, 

data movements which are critical overheads are required to 

access memory from processing element. Such an architecture is 

implemented in HMC. 

2.2 Case Study of Data Layout 
Based on above multi-channel PIM architecture of chapter 2.1,  



we assume quad-channel memory and analyze data layout for 

vector arithmetic operation to minimize PIM-to-PIM 

communication and utilize parallelism to improve performance. 

When performing page allocation on the memory, the data layout 

is determined depending on the channel interleaving policy. If 

channel interleaving is not supported, one page is allocated to one 

channel, but if channel interleaving is supported, one page is 

allocated to multiple channels. Figure 2 shows four cases of data 

layout of vector operation depending on page allocation in quad-

channel memory and shows pipelining sequences of each case. 

Figure 2-(a) shows the data layout where both source and 

destination data pages are allocated to one channel. Figure 2-(b) 

shows that source data pages are allocated to same channel, but 

destination data page is allocated to different channel. Figure 2-(c) 

 

Figure 2. The Cases of Data Layout and Pipelining Sequences 

shows the data layout in which all data pages are allocated to 

different channels. In Figure 2-(d), all the data pages are evenly 

distributed across all channels. 

First, in the case of Figure 2-(a), all data pages are allocated to the 

same channel. Thus, the pipelining sequence is that processing 

element reads two source data from the local memory, then 

performs the PIM operation, and writes results to the destination 

data of the local memory. This data layout is similar with single-

channel PIM architecture. In this case, PIM-to-PIM 

communications are not needed, but address translation may be 

needed, Parallel computing is not performed either, because all 

processes are done in local memory. 

In Figure 2-(b), two source data are allocated to the same channel, 

but destination data is allocated to another channel. Thus, PIM-to-

PIM communication between source data channel and destination 

data channel is necessary. In pipelining sequence of Figure 2-(b), 

PIM-to-PIM communication is added between EXEC and Write 

in the pipelining sequence of Figure 2-(a). 

In Figure 2-(c), the channel interleaving policy is not applied, and 

all data pages are allocated to different channels. Therefore, 

fetching the source data from the other channel through PIM-to-

PIM communication is additionally needed in Figure 2-(b). We 

can see that this case is where the number of PIM-to-PIM 

communication is the greatest. In Figure 3-(c), the PIM-to-PIM 

communication overhead occupies a large part of the entire 

pipelining sequence. The interesting feature of this layout is that 

reading source data at the channel 0 and reading source data at the 

channel 1 to send them to channel 0 by PIM-to-PIM 

communication can be processed at the same time. 

In Figure 2-(d), the channel interleaving policy is applied, and one 

page is split into four channels. If the indexes of the distributed 

source data and destination data is same, it is possible to perform 

operations in parallel on each channel without data read/write 

PIM-to-PIM communication. Therefore, it is expected that the 

number of pipelining sequence repetition is reduced to one-fourth 

as compared with Figure 2-(a). However, it needs address 

translation in every channel. Thus, a lot of address translation 

PIM-to-PIM communication overheads are expected. 

3. SIMULATION ENVIRONMENT 
We have experimented with gem5 full system simulator in which 

multi-channel PIM architecture is applied. The gem5 is cycle-

accurate simulator, so it simulates micro-architecture cycle-by-

cycle. To implement PIM architecture, we customize memory 

parts of gem5. We add processing element and implement PIM-

to-PIM communication in the gem5.  

Table 1 shows processor configuration that we use on gem5 

simulator. ARM processor is used to host processor, because in 

case of x86 processor, when implementing PIM architecture on 

real system, customizing hardware architecture is difficult since - 

Table 1. Processor Configuration 

Parameter Value 

Core ARM Cortex-A15 

Frequency 1.0 GHz 

# of Cores 1 – 4 

L1 Caches 32KB Dcache, 32KB Icache, 4-set 

associatives. 

L2 Caches 512KB, 8-set associatives 

Etc Out-of-Order Pipeline, Dynamic 

branch prediction, BTB, GHB 

Table 2. Memory Configuration 

Parameter Value 

Memory Type HMC 1.0 [10]0 

Memory Size 4GB 

Bandwidth 160GB/s 

Latency (tRAS) 21.6ns 

# of Channels 4 

# of Layers 4 

# of Banks 2 

Row Buffer Size 256B 

Etc 32 TSVs, close page policy, 64 write 

buffers, 32 read buffers 



 

Figure 3. The Number of PIM-to-PIM Communication on Each Case 

- already most of x86 processors have memory controller in on-

chip, while ARM processor is fully customizable. 

Table 2 shows memory configuration. We utilize HMC memory 

to apply PIM, because HMC has logic layer on bottom of 3D-

stacked layers. This logic layer has user customizable area and its 

own atomic data operations. Thus, HMC is appropriate to apply 

PIM architecture. In addition, HMC has high memory bandwidth 

and low internal latency. 

To support PIM hardware, we make PIM driver on kernel. we set 

some parts of kernel address ranges as PIM command transaction. 

Address translation of virtual addresses of source and destination 

data is done by PIM driver. By using PIM driver, host processor 

can offload operations to PIM through the kernel and PIM 

hardware can access memory by translated physical address. 

4. EVALUATION 
Based on simulation environment that sets on chapter 3, we 

compare our proposed multi-channel PIM architecture with 

single-channel PIM architecture. Also, we evaluate PIM-to-PIM 

communication overhead and execution time of vector operation 

on each case of data layout. 

 

Figure 4.  Normalized Execution Time on Each Case 

Figure 3 shows the number of PIM-to-PIM communication case 

by case. The name of each case is taken from Figure 2. As we 

expected in chapter 2.2, the case, 2-(a), has the lowest PIM-to-

PIM communication, totally 15 times, because it has essential data 

in its local memory and only address translation needs PIM-to-

PIM communication to get pgd. 2-(b) and 2-(c) have several PIM-

to-PIM communications. Except for address translation, because 

the requested data are in the different channel, data read and write 

operations are required through PIM-to-PIM communication. 

Each total number of communication is 31 and 44. In 2-(d), 

address translations are dominant factors of PIM-to-PIM 

communication, because it utilizes all processing elements of all 

channels. Thus, every channel performs address translations. it 

needs 4 times more than others. Total number of communication 

is 36. 

Figure 4 represents normalized execution time on each case. We 

normalize execution time based on case 2-(a). As a result, we 

demonstrate that case 2-(d), which all data are distributed on each 

channel with channel interleaving policy, has the lowest execution 

time. It speedups about 393.5% faster than basis, 2-(a). Although 

2-(d) has more number of PIM-to-PIM communication than 2-(a), 

because of parallelism, execution time is reduced. 2-(b) and 2-(c) 

are slower than 2-(a) due to PIM-to-PIM communication 

overheads. 

But, it is primitive result, because cycle and delay model of PIM 

in gem5 is set heuristically. Also, it only compares the 

computation part of vector arithmetic operation code. Thus, our 

future works will be setting realistic parameters on gem5 and 

optimization in the entire application. 

5. CONCLUSION 
Performance gap between processor and memory is emerging as 

critical issues in modern computing systems. To solve this 

problem, several researches on PIM are performed. In this paper, 

we introduce PIM architecture in multi-channel memory and 

support PIM-to-PIM communication. This is to enable the data to 

be directly read without the host system and the memory 

controller when the data required for the operation exists in 

another channel. However, this is an overhead to overall system 

performance. Therefore, we have searched for data layout that 

minimizes PIM-to-PIM communication overhead and enhances 

performance through parallelism. 

We observed a 393% faster data layout versus a bad case data 

layout for vector operations through high parallelism and shows 

for a data layout with minimal number of PIM-to-PIM 

communication. 
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